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ON THE STABILITY OF THE EQUILIBRIUM POSITION IN CRITICAL 

AND NEAR-CRITICAL CASES* 

L.G. KHAZIN and E.E. SHNOL' 

Autonomous systems of ordinary differential equations are examined. The stability 

of the equilibrium position is studied in nearly degenerate (critical) cases. 

Estimates are given for the magnitude of the small attracting domain understability 
in the critical case and for the magnitude of the "dangerous" perturbations under 

instability. Standard theorems are formulated and examples given of the proof of 
appropriate theorems. A list is given of all critical cases of degenerationdegree 
no higher than three and of the corresponding stability criteria. 

1. Critical cases and their degeneration degree. We consider a realsystemwith 

smooth right-hand sides 
au I at = j(u), j (u'"') = 0 (1.1) 

n = (Ill, . ., u3. f = VI, . ., j,) 

Let (dj/du)_,co, = r be a linearization matrix and h, be its eigenvalues. In the equilibrium 
position stability problem we distinguish the common case, when the question is resolved in 
the linear approximation, and the critical cases, inwhichthe answer depends uponthenonlinear 
terms. We characterize a critical case by a collection of v equality conditions imposed on 
the right-hand sides of system (1.1). The conditions can be imposed not only on r but also 
on the higher derivatives of f (allowing for only the conditions affecting the stability). 
The number .v is called the degeneration degree or the codimension of the problem being exam- 
ined. As v increases the difficulty of the investigation increases, in general, and the 
problem can even be unsolvable (in the sense indicated in /l-3/). In a general stability 
problem it is natural, it seems, to have a complete investigation of all critical cases of up 
to some degeneration degree v = vm,. However, among cases with v )vmax it is appropriate to 
examine those stemming from applied problems or those of particular mathematical interest. If 
we take such a stand, then we have to restrict ourselves to vmar = 3 since at present we can- 
not set up even a complete list of critical cases with v = 4. Below, the statement "the 
system is stable" signifies the asymptotic stability of the equilibrium position U(O), "insta- 
bility" signifies the absenceofLiapunov-stability, ng is the number of h, equal to zero,and 
nz is the number of pairs of purely imaginary eigenvalues ofR Relj (0 for the remaining hj. 

Example. In system (1.1) let "a=Z a*= 0, and let there be no additional degeneration 
(v=2). Then the Jordan normal form of P contains a cell. Stability criterion: instability 
obtains when a#O. Here a is some combination of quadratic coefficients. Both stabilityand 
instability are possible when a=O(v=3). The stability criterion consists of inequalities 
on the Taylor coefficients of f up to fourth degree, inclusive. Equating the left-hand side 
of one of these inequalities to zero, we obtain a problem with v=4, not analyzed until now. 

2. Statements of the standard theorems. We reduce system (1.1) to a normal form 
ofupto some order m (see /4,5/l and we discard the higher-order terms. We obtain 

u' = h (u), w' = g (u, w) 
Here the variables 0 correspond to critical R,(Reh, = 0), w to the rest,Thepolynomial system 

(W :u’= h(u) which splits off is termed model; its real dimension equals Q, + Zn,. The investi- 
gation of the critical case consists in proving the following theorems. 

Theorem ~(stability criterion for the model system). For the asymptotic stab- 
ility of system(1M)it is sufficient to fulfil the form 
@N (a) < 0. 

conditions M, of O,(a) < 0, . . ., 
Here a are the coefficients of system (M). If @,(a)#0 for all j and@,(a)>O for 

even one j. then the equilibrium position u = O is unstable. In this casewe speakof strict 
instability. 
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Theorem S. If conditions M+ are fulfilled, system (:.?I is stable. 

Theorem Ns. If system (M)i.s strictly unstable, system (1.1) is unsttibje. 
The correctness of the choice of the model system (of the number m) can be est.abiishet-1 

only by Theorems S and NS. Sometimes certain terms of degree no higher than m donot affect 
the stability and are not included in the model system. Let '4s now considrr systems that dif- 
fer slightly from (1.1) in the sense C,: 

Theorem S,. Let conditions M, be fulfilled for system (1.1). Then, for all systems 
(2.1) with EQQ,: 1) a neighborhood G, of point 0) exists such that every trajectory start- 
ing in G, remains in G, for 0 < t<oo; 2) all trajectories starting in G, go into a smalL 
neighborhood GzC of point 0) as t-+ m . The diameter d(C,)< CF.*. 

Theorem IV&. For system (1.1) let the model system be strictly unstable. Then when 
E < %there exists a solution ~~(1) for each of the systems (2-i), for which 1 ue (0) / = 6 (E), 
s~pt,, 1 U, (L) I> 0. Here d (E) < Cex-, but does not depend on E. 

The indices X, and x_ for all cases with v < 3 are given in Sect.!i. 

Notes. lo. In a number of critical cases (usually when no=&!!) instability is the norm. 
Theorem Mthen has the form: "if @D(n)#O, instability obtains" (see example ir: Sect.;). I n 
these cases Theorem S and S, are absent. 

2'. In Theorems ~7, the regular estimate of the diameter d(C,) of the attracting domain is 
a principal one. The proofs use Liapunov functions constructed in accordance with Theorems S. 
In Theorems NS, a regular 
6 (E) -I 0 as E -0 for system 

3'. The perturbation 
quantity 

estimate of b(E) is most essential. The proof of the fact that 
(2.1) if system (1.1) is unstable is elementary (see /6/j. 

pL)-/ may depend on I or may be a random function. If only the 

is small, then Theorems S, 
(see Sect.6). 

and ,VS, remain in force, but the indices x+ and x-may be decreased 

4O. If matrix I- is diagonalizable and system(M) contains only mth-degree terms in ad- 
dition to the linear ones, then an explicit use of conditions M, is not rquired. Then 
Theorems S and S, start thus: "if system (M) is asymptotically stable, then..." (see Sect.6). 

5'. For parameter-dependent systems Theorems S,and NS, are connected with the conceptsof 
soft and hard loss of stability /7/, of dangerous and safe boundaries of the stability domain 
in parameter space (see /6.8/j (*). 

3, List of critical cases withv.< 3. Inorder toenumerate all the criticalcaseswith 
v __ 3 it is necessary to write out the stability criteria in all cases with v = 2 and to 
replace by turns one of the inequalities obtained by an equality. Therefore, here we derive 

the model systems and the stability criteria for v = I,2 (see Sect.4 for the criteria for 

v -2 3). Below z, are real variables, ,z). = &$Q are complex variables, the sign +*I) denotes 

the complex conjugate, a, b,a,fi,v are real numbers, and A, B are complex numbers. The papers 

in which it seems that the criteria derived were first obtained are mentioned inthereferances. 
We now present the list of critical cases with v >< 3. 
cases l- 3: l&l =- I. RI = 0 /9/. 
1) (M):l' = a_r*. Instability when a#= O(v = 1). 
2) Additional degeneration: a = 0, V = 2. (.&f):~. = b9. Stability when b<O, instability 

when h>O. 

-. 
*) E.E. Shnol' and L.G. Khazin, On the stability of stationary solutions of general systemsof 
differential equations in near-critical cases. M: Akad. Nauk SSSR Inst. Prikl. Mat. Preprint 
No.91, 1979; L.G. Khazin and E.E. Shnol', On soft and hard ioss of stability of steady-state 
solutions of differential equations. M.: Akad. Nauk SSSR Inst. Priki. Mat. Preprint No.128, 
1979. 
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3) Repeated additional degeneration: a=b=O,v=3. 

Cases 4- 6: ns = 0, n2 = 1 /9/ 
4) Ir = 1; (M) :z’ = ioz +A,~~. Stability when a,<& instability when % >% 112 = Red,. 
5) Additional degeneration: t~,=O,v= ~;(M)z = ~WZ +zfA,pi d&b Stability when &<O, 

instability when a,> 0, US = Red,. 
6) Repeated additional degeneration: a2 =a2 = 0. 
Cases J-8 : no = 2, np = 0 /lo/. 
7) v = 2; (M) : zl’ = z2, 5; = alp, Instability when a# 0. 
8) Additional degeneration: a = 0, v = 3. 

Note 6'. The case when two eigenvectors of r are associated with a multiple a= 0 
corresponds to v=4 and, therefore, is absent in this list. 

Cases 9-10: n, = n2 = 1. 
9) v = 2; (M):z’ = ioz, x’ = a$. Instability when a# 0 /9/. 
10) Additional degeneration: a = 0,v = 3 (*). 
11) n,=3,n,=O,v=3 /W. 
With two pairs of purely imaginary A&, = 0, n,= 2) we have one case of "generalposition" 

(v = 2) and five with additional degeneration: (V = 3). In three of them an additional con- 
dition (the resonance relation) is imposed on the linear terms, while in the other two, on 
the nonlinear (quadratic and cubic) ones. Let 

a 1,2 = i- i%, h,,, = riz: i%, 02 > 01 >@I %# 2%‘ 02 # 3% 

12) V = 2; (hf) : Zk‘= imkZk + Zk (dk,Pl+ dkzp?), k = i,2 /11/. 

-v+: alI< 0, a22 < 0; when aI2 > 0 and 022 > 0 A = allat - alfa2, > 0; ajk E Re Ajk, 

13) Additional degeneration: all = 0, v = 3 /6/. 
14) Additional degeneration: A = 0,~ = 3 when a,,> 0 and u2,> 0. TWO pairs of purely 

imaginary h and internal resonance: cases 15-17. 
15) Resonance 1 : l(o2 = 0,); v = 3 (**I_ 
16) Resonance 1 :2(0, = 20~); ‘v = 3 /12,13/_ 
17) Resonance 1: 3 (~0~ = 30,);yz 3 131. 
Remaining cases: 
18) n, = 1, nz = 2, v = 3. 
19) n, = 2, n, = 1, v = 3. 
20) n, = 0, n, = 3, v = 3 /14/. 

4. Stability criteria for cases of codimension 3, 
3) (M):x'= cx4. Instability when c# 0. 
6) (M) : z’ = ioz + z (d,p -i_ A,$ + d,p3), Red, = Re dz = 0. Stability when Fie A, < 0 and 

instability when Red, >O. 
8) @4):x’= J-td,x2+dxy$ c+3; y' = ax3 + bxy + a,x4 -I- b,x*y + cy2. Conditions M, are 

three inequalities p( 0. @( 8p2. e<~ 0. Here 
P = a - c&b; d g b ‘+ 2d,, g’ z (c-+ 3a,/a - 24 Q -I- 5Q,; Q1 = b, - 24,~ - d,d + 3d,. 

The third and fourth degree terms not written out are unessential for stability (***I. 
10) (M) : x‘ = 6 1 z 1 ’ + bzx3; z’ = ioz -f- dzz. Conditions M+ have the form: ab<O,b,< O;a = 

Red. 
11) (M) : xl’ = x2, x; = x3, x3’ = ax,“. Instability when aft). 
13) WI: PI‘=P~(QZ~PZ + ef?p& pz'=p2fa22p2 + e2%psf; 

Here a22 C O.a,? 
tck‘= ~k(p,~}. 

and a2r are not simultaneously positive. Condition _LI + : a(‘)< 0. II 

14) 

*) L.G. Khazin, On the stability of the equilibrium position in some critical cases. M.: 
Akad. Nauk SSSR Inst. Prikl.Mat.Preprint No.10, 1979. 
**) L.G. Khazin, On resonance instability of the equilibrium position under multiple frequen- 
cies. M.: Akad. Nauk SSSR Inst. Prikl.. Mat. Preprint No.97, 1975. 
***I For a discussion of this criterion and its simple derivation see: L.G. Khazin, M.:Akad. 
Nauk SSSR Inst. Prikl. Mat. Preprint No.9, 1980. 
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Here a>O. l> 0. Condition M, : K(0. Here 

K = a* (la’,:’ f al:)) + a (la::’ + ocn)) 12 + lag’ + a(z). tt 
15) (M) : zIv = ioz, i- z,; zz' = ioz, + Bz, 1 Z, 1 t Instability when ImB # 0. 
16) (M) : zl’ = ioz, + B,z,*z,; z’* = Zioz, + B,z,*. Instability whenB, f 0. B, # 0, A2 i 61,+ + ,, < 0. 
17) The stability criterion cannot be specified by explicit formulas. 
18) (M): 2' = ar'; zrr' = iorzr, k : 1, 2. Instability when a # 0. 
19) (M): zI' = r2, I?' = ozi2, 2' = ioz. 

20) Let A,,*= -1_ iw,. h,,=& ia,; ~~,~=_t io,and let lower-order resonances be absent: ( aj # 

Of* m/# 2ok? Oj# 3ok, oj# ok i W(; @j # 2wk $ 0;. 

(M): pk'=pkxakjp,; k,j--1,2.3 

The equations for qk are not written out. A solution of form pk (1) = ckr (t), r' - r** Ck ;a 0 (not 
all ck = 0) is called a growing invariant ray of system (M). Condition M : there are no 
growing invariant rays among the solutions of system (M). The verificatio; of M, leads toa 
consideration of seven linear systems Ap -= e with pk > 0. Here A --II ajkIJ and as c we take 
the vectors(l,l,l),...,(O, O,i). If even one of these systems has a solution, then system (M) is 
unstable. 

5. Indices in systems S, and NS,. Table 1 shows the indices x+and x_ figuring in 
Theorems Se and NS,. The majority of the indices presented are unimprovable. Iftheindices 
can be increased, then the hypothetical unimproved value has been shown within parentheses. 
We observe that if the requirement u(0)eGG1, is waived, then the indices X+ can be increased 
in certain cases where there are zero h. A dash in the x, column signifies that stability 
is impossible in the case given. In cases 6 and 10 the indices x_ depend upon which of the 
conditions are violated. 

N 

8 
9 

10 

- 

- 
v+ 

6. Example of the proof of Theorem 9, (case 20). Let system (1.1) satisfy the 

conditions of case 20 (Sect.3). By smooth transformation (invertible in a neighborhood of 
~(a)) we normalize (1.1) up to third-order terms, inclusive. We obtain 

s'k = i(",+ i- ,#'(.?) -+ rrk; IL.]' = lijtc., t_ q;*)(u') + #'(Z, ID) + r-q 
(6.1) 

Here zk are COmpleX variables (k = 1,2,3), UT, are complex or real variables. If there are multi- 

ple 71,, then we can also take linear surrnaands in the equations for w . The upper indexgivas 

the degree of the homogeneous polynomial; polynomials 0:"' are linear in the variable II': 

1 rlk (z. tLp) 1. 1 rtf (z, w) 1 .< C (I z I‘ + 1 w 1 *); for the vectors we have 

( z 1’ = 7 1 zk (‘3 1 u’ j* = $I 1 u’> 1’ . . . 

n a real notation system (6.1) takes the form 

2' = r,r f PI (I) + R'X) 

y' = Try-t- @" (y) + Q@' (I. y) + R(") 

IP' I< c I= taY I R(=) (r. Y) I 
I R[") (2. Y) I < c il r I' -t- I Y I') 
dim I = 6, dim y - n --- 6 

(6.2) 
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In the real notation the system 

2: = r,z+ P(S) (5) (6.3) 

1 (M). Let us consider an arbitrary system of form (6.3), 

being the real notation for a normalized system. Let r, be diagonalizableandall Rek(r,) = 0. 
corresponds to the model system 

441 

Lemma 1 /14/. Let z=U$(t, E) be a general solution of system (6.3) and z = Q1, (6 E) 
be a general solution of the homogeneous system z' = P(aj(.r) ((I$ x (0, fJ= &). Then %(t, &) = 
exp (tr,)@, (P, E); in particular, 1 C+ (t.E)\ = I% tt, 511. 

Lemma 2. Let the homogeneous system 

5' = h (z), h(uZ) = a"h(z), m > 1 (Va > 0) (6.41, 

be given. If it is asymptotically stable, then a homogeneous Liapunov function exists for 

which 

~,<-yyzlI"1+1,L(ccr)=a*L(2)(y>o) (6.5) 

Corollary. An E*>O exists such that when i6hk)i <%jtl’” the system +' = h(z)+6h(z) is 

asymptotically stable simultaneously with system (6.4). 

Note 7'. Lemma 2 is a corollary of Theorem 22.1 in /15/ (the appropriate references 
are presented therein). 

Corollary. From Lemmas 1 and 2 it follows that if system (6.3) is stable, it admitsof 
a homogeneous Liapunov function L&f with an estimation (6.51. 

Lema 3 (Theorem s). If system (6.3) is stable, so is system (6.2). 

Proof. Let L*(y) be a quadratic Liapunov function for the systemy'= T~l-i-Q'*'(Y) ,with the 
estimation &'< --,(yl*. On the strength of the homogeneity, I%/~~19 C1l~l,IaYaYl~C,lYl. 
We set L(u) = L (G Y) = .&(I) -i--G(Y) 

u = (al. . . ., %I) = (5’ . * .t % YI. . . ., Y,,) 

Cl (l&l) 5 - Yt I = I4 + G I = I i * r - Yz I Y I* + G I Y l t I z I* l Y 1 + 

By virtue of (6.2) 
I u f’f 4 - 7.7 I = 1‘ + G I fz If Ys > cJ 

L' < - YI u I’. (I~I<Co, Y>O) (6.6) 

Theorem 1 (Theorem S for case 20). If system (6.3) is stable, then... (thiscontinues 
in accord with the standard formulation in Sect.Z), and the index x+ = 11~. 

?roof. By U we denote the domain of action of inequality (6.61, 

o<&<a, and by s(a), the boundary of U(n). Since tfav) = arl,(u), 

I@"~ < I u ( i K a”” Y * 
when rr~;:S(a). Let U(o)c L' when a<%. We set G, = U(a,). When e = 0, L'< 
fore, when &<a,, because of the perturbed system (2.1),&.<n/2 on S(a,), 
ies of any one of systems (2.1) goes into domain CZ. The derivative of 
(2.11 is 

L’ = ce (f, Jr rP’ - 1,) < - y 1 u I’ + C,e 1 u ) 

The right-hand side of (6.8) is negative when IuI>C,~‘.i*, i.e., by reason of (2.1) u(t) "mono- 
tonically" (in the sense of decrease of L) approaches a=0 up to a distance -eli'.We remark 
that in (6.81 we made use only of the smallness of If-_f:L'I. Let #~')--~&<& When a<% t 
by the implicit function theorem there exists, in a neighborhood of u=O, a unique solution 
cP) of the system P)(U)= 0 ; in this connection, (uie'l gCe _ We denote 
Then 

& ca) = +Q tV) _f (U _ &). 

by vie) the domain 

(6.7) 

n<O on S(a,). There- 
i;e., the trajector- 
L relativeto system 

(6.8) 

The first summand <e by (2.1) and the second <C,s because ! is smooth. Since S[(JLj)=o, 
we have 

(6.91 
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We fix some function (:Q ; let L@'(U) 1. (II u(~)). The derivative of L"' relative to :: .i : 
has the form 

,jL(e) 
-E 

dL(C’ 

d: du 
p (“) (IL) - j(U - u(C))) + -p(, U’C’)/(!‘ -“(‘))<C,eJu - .(~)~a-.y,u__u’~~,I (6.10, 

Here the first summand has been estimated on the strength of (6.9) and the second, of (6.6). 

The right-hand side of (6.10) is less than -IU-PI* y,2 when/u- u@)I>c~+*:. We set G, = (u.L(“(u~ 
WI. Q = (GlKd2. A neighborhood of G, is obtained from U (qe) by a shift by an amount '< L‘F 

and is invariant for the system (2.1) selected. When P GE* the domain U&e) contains any of 
the domains G,; we set G?, 7 U (2qr) Then the diameter d (c,,) ;; ~~(2~~)“‘~ c,~‘: (see (6.7) for R, 

and K,). 

Notes. 8'. In the proof of Theorem 1 we have used only: a) the asymptotic stabilityof 
the model system; b) the absence of quadratic terms in (6.3). Therefore, the thecremproved 
is valid for any I!,> 1 in the absence of resonances of the two lowest orders (w;#~r;r,~,i Z!W,. 

Cdj # Wj + WI.). 

9'. If we assume the smallness of only I‘/'~' 11, then for any ~->l the unimprovablu 
index X+ is l/3. Let us clarify this by the example of $ 1 . Let a system of twoequations 
in the complex notation be 

z IUL + F‘ ’ h (PC-’ ‘) z - pz (p 1 1 l’j (6.11! 

Here h(p) =: 1 when p 6 1; 0 '< h (p) < 1 when 1 i (1 <. 2. h (p) fi II when p ;.. 2. Among the solutionsof (6.11) 

there is the stable limit cycle IL/ -- et’ and G,,- (z.lt( qE’a) Then 1 f - fc’ 1 -2 E. ii f - fEJ 11, - E’ 1. 

7. Example of the proof of Theorem NS, (case 16). The proof scheme suggested 

below is typical. The model system's instability can be proved by constructing ~1 solution 
whose trajectory 1 tends to the equilibrium position as I + -co. We construct a canonic neigh- 

borhood 0 (0 with the following properties: a) the solutions of the complete system grow 

monotonically in some metric inside R; b) the trajectories only enter Q through its lateral 

boundary Q (compare with /16,17/). When c # 0 properties a) and b) are preserved in a 

neighborhood of u 1") of the size of the order of F~-, which yields Theorem IVSZ. In certain 

cases we have managed to construct polynomial Chetaev functions in a complete neighborhood of 

nm) (or in the greater part of it); this permits us to construct the proof and to obtain un- 

rmprovable indices X_ is cases 7 and 15 and some others. This scheme is not discussed here. 

Let system (1.1) satisfy the conditions of case 16. Let dimension n 4 (i.e.,thesmal- 

lest value possible for this case). lemmas 4 and 5 repeat the results of /12,i'i/ in a form 

in which they are to be used in what follows. We normalize system (1.1) up to second-order 

terms, inclusive. In complex form we obtain 

i; -. LU)I, + H,r*'z* .: 0 (I : I’). zp’ -- 2tl,,r, -. Hz-.,2 : 0 (I z 13) (7.1) 

The model system is 

We set 

From (7.2) we obtain 

PI' 2b1p,[,,“’ cos (9 - PI) (/..j) 

p'.! -- 2b,p,p,‘i’ cm ($’ &) 

$:’ , -.-2b,p,“‘sin ($ - B,) b,p,p, -I” 418 (rp - p,, 

Lemma 4. Let b,>O, bp)U, !il =: 6, - p2# n. Then the equilibrium position (0. 0) of 

system (7.2) is unstable. 

Proof. ~1 = r (0. p, = kr (0, r’ z 2b,k’;’ eos .&,, $I :- q. = COnCt is a growing solution of system (7.31 

if when B+o we set 

h ( .: . 8: ! 

When (3 .- 0; k. b,,D,. I$,, ..: 0. 
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Lemna 5. (Theorem NS ). Let b, > 0. b, >O, 6 + n. Then the equilibrium position of 

system (7.1) is unstable. 

Proof, We set px = A eos@, pa = R sin 0, dt = R'/W. From (7.1) we obtain 

R'= RII(e,$)+O(R”r) (‘zd/dr) (7.5) 

n = 03s e (sin eP Ib, cos 0 cos (9 - p,) f b, sin e cos (q - p*)i 

e+ = g, @. w + 0 W”7, 9’ = g* (e, 9) + 0 (RI’*) 

g, = lxs 6 (sin @“> F-6, sin e COS (* - &) + bt ws 8 cos (* - @*)I 
(7.6) 

& = (s-in er”’ Bb, sin 8 sin (tp - 3J + b, cos e sin (1p - I&)! 

TO a growing solution of the model system corresponds a fixed point p(0,~ 90) of the angular 

system 

0 = g1 (e,Np), + = g* 03, *P) (7.7) 

In this connection, ctg0, = k, iI(e,,g,) = n, >O. Linearizing system (7.7) in P, we obtain the 

matrix 

Since cos+$i?>o, both the eigenvalues of matrix A lie in the left halfplane. Let 2(0,+) be 
a quadratic Liapunov function such that relative to (7.7) the derivative r6-~ in a neigh- 
borhood 0, (P). Let a neighborhood U,(P)c U, be such that on the strength of (7.5) we have 
R’ > WoR when (0,$) E U,, R < R, . Let 1,>0 be such that the line r&9) = 1,li.e~ wholly inU,. 
Finally, let R,<R, be such that on the strength of (7.6) we have l'<-YY,<O when 2(0,+)= II 
and E<%. Every solution of systems (7.5) and (7.6) (and, by the same token, of system 
(7.1)) for which l(fJ(O),rl,(O)) <&,R(O)= 6< R, when T = 0 grows monotonically (R’>O) up to the 
fulfillment of the equality R =A,. The lemma has been proved, Now, together with the 

system z'= F(z) of (7.1), we consider the auxiliary system z' = F(e)(z), z = (zi, 2%) OK (in the 
real notation) the system (2.1). 

Theorem 2 (Theorem ivS, for case 16). The theorem's statement is the standard one 
(see Sect.Z), the index X_ = 1. 

Proof. From the implicit function theorem it follows that system F@)(z)=O has when 
a<~ a unique solution P) close to I = 0: @(@)f = 0, I# 1 <c& In this connection (see Sect, 
6) tie) (z) = F (z - z@)) + 6F; 1 &F I < C+ [ z - do f. We introduce the variable U= z -z@) i.e. u1 =zI -zI(@, 
v, = zp - zp(q. We set 

- "k = l/PkC lvh.> \I -= P1- 2~,, p, = Rcos0, ps = R sin 0, dr = R’j$dt 17.8) 

From the system z.= E(*)(Z) we obtain 

R' = RH (0%) + 0 (R") + AH (R, 0, q), 1 AH 1 4 CR’& (7.9) 
O' = gl (01%') + 0 (r/?ii + Ag, 
9' = & (%g) + 0 (r/?ii + A&, I Ag I < CeR-“’ 

Let t to.44 -c I,, R<R, (see Lemma 5). Then, by virtue of (7.9), R‘> %II,R -CR’!*e, whichexceed 
~/,l&.R when R > C,e’. Let l(O,tp) = 1,. Then when R < R, , by virtue of (7.9) we have I'< - Y1 + 
C,eR+, which is less than -y,/Z when R > C#. If B (0)> C& (Co = max (C,, C,)) 1(0 (0) ,$ (0)) < I, , then 
R(r) grows monotonically until R ==R: is achieved. We note that */*I v/~<R<Iv[~. Thus, there 
exist o(z) for which i v(O) IO &.a and SUP,,~ / u(r) I> R,"*. For z = uf de’ we obtain I 2 (0) I < c,e and 
sup,>o j 6 ft) j > a = ‘,&Rp”‘. 

The authors thank the participants of the university program "Methods of investigating 
the Steady-State Motions of Mechanical Systems" for constructive criticism. The authors are 
grateful to V.V. Beletskii, V. Sh. Burd, I. K., Gavrilov, 1u.S. Kolesov and V.I. Iudovich for 
useful discussions. 

REFERENCES 

1. AHNOL'D V.I., Algebraic unsolvability of the Liapunov-stability problem and oftheproblem 
of topological classification of the singular points in an analytic system of different- 
ial equations. FUNKTSIGNAL'NYII hALIZ, Vo1.4, No.3, 1970. 

2. IL'IASHENKO Iu.S., Analytic unsolvability of stability problem and the problemsoftopo- 
logicalclassificationofthesingularpoints inanalyticsystems of differential equations. 
Mat. Sb., Vo1.99, No.2, 1972. 



444 L.G. Khazin and E.E. Shnol 

3. 

4. 

5. 

6. 

7. 

a. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

KHAZIN L.G. and SHNOL' E.E., Elementary cases of algebraic unsolvability in asymptotic 
stability problems. Dokl. Akad. Nauk SSSR, Vo1.240, No.6, 1978. 

ARNOL'D V.I., Further Chapters in the Theory of Ordinary Differential Equations. Moscow, 
NAUKA, 1978. 

BRIUNO A.D., A Local Method of Nonlinear Analysis of Differential Equations.Moscow,NAUKA, 
1979. 

MALKIN I.G., Theory of Stability of Motion. Moscow, NAUKA, 1966. 
ANDRONOV A-A., VIlT A.A. and CHAIKIN S.E., Theory of Oscillations. (See also in English 
Pergamon Press, Book No. 09981, U.S.A., Addison-Wesley, 1966). 
BAUTIN N.N., Behavior of Dynamic Systems Near the Boundary of the Stability Domain. 
Leningrad-Moscow, GOSTEKHIZDAT, 1949. 
LIAPUNOV A.M., General Problem of the Stability of Motion. In: Collected Works, Vo1.2. 
Moscow-leningrad, Izd. Akad. Nauk SSSR, 1956. 
LIAPUNOV A.M., Investigation of one of the singular cases of the motion stability problem. 
In: Collected Works, Vo1.2, Moscow-Leningrad, Izd. Akad. Nauk SSSR, 1956. 

KAMENKOV G.V., Stability and Oscillations of Nonlinear Systems. In: Selected Works, Vo1.2. 
Moscow, NAUKA, 1972. 

KUNITSYN A.L., On stability in the critical case of pure imaginary roots under internal 

resonance. Differents. Uravnen., Vo1.7, No.9, 1971. 

WINA G.G., Certain stability questions in the presence of resonances. PMM Vo1.38, No.1. 

1974. 

MOLCHANOV A.M., Stability in the case of neutrality of the linear approximation.Dokl. Akad. 
Nauk SSSR, Vo1.141, No-l, 1961. 
KRXOVSKII N.N., Some Problems in the Theory of Stability of Motion. Moscow, FIZMATGIZ, 

1959. 
CHETAEV N.G., One instability theorem. Dokl. Akad. Nauk SSSR, Vol.1, No.9, 1934. 
ROUCHE N., HABETS P. and LALDY M., Stability Theory by Liapunov's Direct Method (Applied 
Mathematical Sciences 22). New York-Heidelberg-Berlin, Springer-Verlag, 1977. 

Translated by N.H.C. 


